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Abstract. We study a connected polymer network in two dimensions with a specified 
topology consisting of idenlical long and fully directed chains. Ihe m a  values of the 
bulk critical erponent, 7~ and the surface oitical aponcnt -& are obtained rigorously. 

Polymer networks made from long chains and subject to the self-avoidkg constraint, 
have been studied in bulk and in a semi-infinite good solvent (see De'Bell and 
Lwkman 1992 for a review). It has been shown (Saleur 1986, Duplantier 1986, 
Duplantier and Saleur 1986, and Ohno and Binder 1988) that the number of 
configurations W N ( t )  of a network G in which all N chains have the same length 1, 
has the asymptotic form 

W,(t) F;: C p N f P - 1  (1) 

where the critical exponent yG is a sum of independent contributions from each 
L-leg vertex expressed in terms of a scaling dimension AL which depends on L but 
not on 12. RI the semi-infinite system tne vaiue of p is tne same as for tne buik 
and the corresponding exponent yb may be decomposed in a similar way but vertices 
attached to the surface have a different scaling dimension A i .  

Here we consider connected networks of fully directed chains in which each link 
has a positive component parallel to some chosen direction. In the semi-infinite 
system this direction is parallel to the surface. At an L-leg vertex of a such a network 
the L- chains flowing into the vertex and the L+ chains emanating from it are totally 
independent of each other (except for their common vertex). In other words, we can 
decompose such an L-leg vertex into an incoming L--leg fan and an outgoing Lt-leg 
fan with L -  + L+ = L and it would therefore be expected that each part would 
make its own separate contribution to the critical exponents. 

If we let EL(";) be the total number of both incoming and outgoing L-leg fans 
in the bulk then we show in this work that for such a network in two 
dimensions the critical exponents yc and y& are given by 

yc - 1 = -$L - 
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and 

where V, is the number of vertices fixed in the surface and L is the number of loops 
in G, which is given by Euler’s law 

L: = N - v +  1 = f ( L - 2 ) ( n ,  + n’L) + 1. (4) 
L>1 

Here nL( n;) is the number of L-leg vertices in the bulk (surface) and V is the total 
number of vertices. 

These results are obtained by establishing a correspondence with the vicious 
random walker problem for which exact results are known (Fisher 1984, Huse and 
Fisher 1984). Ib this end we suppose that the network is embedded in the fully 
directed square lattice (figure 1). Further let the vertices be partitioned into levels 
such that the z-coordinate of all vertices in level k is kt ( k  = 0,. . . , n) and let N, be 
the number of non-intersecting chains connecting levels k-1 and k,  ( E, N ,  = N ). 
For fixed values of the y-coordinates of their end points the number of configurations 
of these chains may be enumerated independently of the chains mnnectkg other 
levels. Each such configuration corresponds to the t-step space-time trajectories of 
a set of N, vicious lock-step landom walkers on a one-dimensional lattice who, at 
each tick of a clock, move one step to the left or one step to the right but shoot each 
other on arriving at the same site. 

4 
Y 

x=o x=t x=2t x=3t 

Figure 1. A polymer network embedded in a fully direcled squarr lattice. The vertices 
are pnitioned into levels such that the zcoordinate of vertices in level k is k t .  
k = U , 1 ,  . _ . ,  n. . ^ .  

Let the N, vicious walkers start at = [Y;-~,, , . . . , yi.l,N,] and terminate 
at g, = [ Y , , ~ ,  yl;,*, . . . , For sufficiently large t, the number of 
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configurations is approximated by (Huse and Fisher 1984) as 

wNk(d-I 

x (%,j - y;-l,i)(yk,j - Yk.i)(l t o(t-')) (5 )  
L < i  < j  < NI 

where Y is the scaled y displacement 

Y = yt-'/2. (6) 

Tb obtain the total number of configurations of G with one vertex fixed we 
must sum Over all values of the y-variables such that yk,i < yk,;+' and which are 
consistent with the network wnstraints. Thus there is only one independent variable 

centre of mass g, 
We suppose that the ends of chains which belong to the Same vertex are 

symmetrically placed relative to the mass centre and adjacent ends are distance 2 
apart (see figure 1). In the case that the number of chains entering or leaving a 
vertex is even, the ends are shifted by one time step so that the walk are all on 
the same suh!attice; The comrpnents of the vectors Yk and Y{-i may be replaced 
by the centre of m a s  coordinates of the vertices to which they belong, the erron 
introduced being O(t-') except in the terms of the product where the difference is 
between two coordinates belonging to the same vertex. In the latter case the centre 
of mass coordinate cancels and the difference arises from the deviations only. 

Cn* 011 .-hs&i .wh:rh ria-+ nr nnrl nn +ha C Q ~ P  WC.-+DY ". onrl =I,D ch-11 taCa  rhk tn ha it. 
&"I '..A Ul."",., "llll" .,LULL Y. I.." Y.. ".U -...I ..,,,In " U,." "l .,..PI, LY.... "I- L" "I L Y  

n -- ~~. 
w ( n t , t j  = E.. . 11 w,,(~h-~ - I/&, t j  

1 2  i v  k = l  

where the repeated sums and integrals are such that < g2 < . . . < 0". The 
function P ( 6 ,  . . . , pv) in the integrand of (7) is the product of all factors in the 
product of (5) in which the Ys belong to different vertices and in which the Ys are 
replaced by the centre of mass coordinate of the vertex to which they belong. The 
integral contributes only a G-dependent amplitude factor and the local contributions 
to the critical exponent come from the factor U( t )  which is defined as 
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where L; is the number of legs in the incoming fan at vertex U and L$ is the number 
of legs in the outgoing fan. It follows that the critical exponent has the value 

V 1 1 
2 4 yc - 1 = - - ( N -  v +  I) - - - j J L t ( L i  - 1)+ q ( L :  - l)] (9) 

"=I 
which completes the proof of (2). D 

For ap-rtnr polymer, N - V + 1 = 0, L t  = p, L; = 1 for i = 2 ,..., p + 1 
and hence yC - 1 = -1/4p(p - 1) in agreement with Fisher (1984, (equation 
4.2)). Similarly for a p-watemelon, N - V + 1 = p - 1, L: = L; = p and 
yG - 1 = -1/2(p2 - 1) (cf Fisher 1984, (equation 4.3)). 

Similarly, the configurations of a network C in which V, of the vertices are fixed 
near the surface = 0, can be identilied with the trajectories of vicious random 
walkers in the presence of an absorbing wall. The number of such trajectories and 
L-.~., -,.I.....~. mlfin..m+:.\lo br,.mn. mnrm.tnr ism\ in.tanrl f n  I l ~ l l c c  p , y , , , c 1  W " " ~ V , ~ L L " . l O  -w...c., \I " . . l o l l .  ""J,, Y Y L l Y "  Y l  (d ,  

WE:'(ar6-1- a r k , t )  

NI 
2 2  2 x n(y~-I,iyk,i)  n ( K - 1 , j 2 - y L - t , i  ) ( G , j  - y k , i )  

x ( l + o ( t - I ) ) .  (10) 
i= l  l< i< j<NI  

We suppose that the endpoints of the chains entering and leaving a vertex U 
attached to the surface have ycaordinates 2F + 6' and 2e + 6 respectively where 
e '=  1,. . . , L ;  and e =  l,.. . , L $ .  Also if L; 2 L$ then 6 ' =  Oand 6 = L ; - L $  
or if L$ 2 L; then 6' = L: - L;  and 6 = 0. By following the same arguments as 
above, equation (7) is replaced by 

V 

x Jdyv,+, . . . J dyv Pa(%, . . . ,Uv) n exp(-L,( f / 2 )  (11) 
%,=I 

where 
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where U ( 1 )  is defined as above but the product is restricted to vertices in the bulk. 
The critical exponent is therefore 

V 1 1 
2 4 7; -1  = - - ( N -  v +  v,) - - [L;(L;  - 1) + L t ( L t -  I)] 

u=v.+1 

which agrees with (3). For thep-star polymer in which the vertex of degree p iS 
embedded in the surface, yG - 1 = -1/2pz (cf Fbrrester 1989 (equation 31)) and 
for the p-walemelon yc - 1 = - (3pz  + p - 2)/4 (cf Forrester 1989 (equation 28)). 

One of us, JWE, wishes to thank the Centre for Chemical Physics at the University 
of Western Ontario for support and hospitality during this research. This work was 
partially supported by NSERC of Canada. 
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